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ABSTRACT g

The research presented herein demonstrates the feasibility of predicting ultimate stren gths in simple
composite structures through a neural network analysis of their acoustc emission (AE) amplitude
distribution data. A series of eleven ASTM D-3039 unidirectional graphite/epoxy tensile samples were
Joaded to failure to generate the amplitude distributions for this analysis. A back propa gaton neural
network was trained to correlate the AE amplitude distributon signatures generated during the first 25%
of loading with the ultimate strengths of the samples. The network was trained using two sets of inputs:
(1) the statistical parameters obtained from a Weibull distribution fit of the amplitude distmribution data,
and (2) the event frequency (amplitude) distribution itself. The neural networks were able to predict
ultimate strengths with a worst case error of -8.99% for the Weibull modeled amplitude distribution data
and 3.74% when the amplitude distribution itself was used to train the network. The principal reason for
the improved prediction capability of the latter technique lies in the ability of the neural network to
extract subtle features from within the amplitude distzibution.

1.0 INTRODUCTION

Previous research [1] has indicated that ultimate sengths could be predicted by mathematically
modeling the amplitude distribution of composite tensile specimens with a Weibull distibution. The
analysis demonstrated that an equation of the form 6, = Co + C1b + C28 + C3b*6 could be used 10
predict ultimate strengths, where "b" and "8" are the Weibull disuribution shape parameters and the
density function is given by f(x) = (b/6) * (A/6)b-1 = exp(A/G)b. The Weibull parameters were therefore
proposed as inputs to a back propagaton neural network. Research has also demonstrated [2] that a
back propagation neural network model of the AE amplitude data collected during the initial stages of
Joading of 2195 aluminum-lithium alloy weldments could be used to predict their ultimate strength.
There the number of AE hits recorded at 1 dB intervals were used as the input vectors 1o the neural
network. It was thought that a similar approach might work with these composite tensile coupons.

2.0 NEURAL NETWORK ANALYSIS

NeuralWorks Professional II/PLUS software, by NeuralWare, Inc., was used to develop the back
propagation neural networks for this paper. Input data was fed into the network through an array of
input neurons. Each input neuron was then fully connected by a series of weighting functons to a layer
of hidden neurons and these in turn were fully connected to the output neuron. A bias neuron was weight
connected to the hidden and output layer neurons to serve as a constant reference or offset value in the
network.



The weighting functions serve as the memory of a trained nerwork by providing a multiplier between a
preceding neuron'’s output value and an ensuing neuron's input value. A back propagation neural network

-

works by minimizing the error between the generated (neural) output and the desired (actual) output

Six AE data sets were generated by loading samples at a rate of 500 Ibs/minute 1o failure, while the
AE activity was monitored with a single Physical Acoustics Corporation (PAC) R15 transducer and PAC
LOCAN-AT. Only the portion of the AE amplitude data collected up to 25% (1500 1bs) of the expected
failure load were supplied as inputs to the statistical analysis and neural network models. Five additional
samples were loaded to failure and analyzed separately to provide a test base for the ultimate strength
prediction equation models.

The first neural network was trained using the Weibull parameters of the modeled amplitude
distribution as inputs to demonstrate any similarities or differences with the results of the previous
multivariate statistcal analysis. A two layer network consisting of only an input and output laver was
used, since it was known from the previous experimental work [1] that the parameters were linearly
related to the ultimate swength of the samples. The results of the back propagation network trained with
the Weibull parameters is shown in Table 1. The Weibull parameter "b" was found 1o be the primary
classifier for predicting the ultimate strength of the samples with a maximum -8.99% error. On the other
hand when the Weibull parameter "0" was used in the product "b*g" only a slightly better prediction
(-6.28% error) was made with a relatively large (-8.39% ) error in the training set. The previous
experimental work [1] yielded a worst case error of 5.39% for the sampled tested. Thus, the neural
nerwork approach of mapping the Weibull parameters to the known ultimate stren gths was not as
accurate as the multivariate statistical analysis,

b b=6 Event Frequency
Specimen Actal Predicted % Ertor Predicted % Error Predicied % error
Number Strength Strength Strength Strength
(ksi) (ksi) (ksi) (ksi)
1+ 234.8 234.95 0.06 236.11 0.56 237.26 1.05
2+ 2276 226.50 -0.48 225.09 -1.10 226.88 -0.32
3+ 237.2 236.31 -0.38 235.52 -0.71 233.61 -1.51
4+ 218.8 209.18 -4.40 200.45 -8.39 218.73 -0.03
5+ 144.0 138.4% -3.55 142.72 -0.89 141.81 -1.52
6+ 176.7 182.49 3.27 180.09 1.92 78.37 0.95
7 224 .4 204.22 -8.99 224.68 0.13 228.87 1.99
8 215.2 213.57 -0.76 220.96 5.46 216.75 0.81
9 233.0 232.99 0.00 236.25 1.40 241.71 3.74
10 192.4 201.87 492 180.33 -6.28 186.81 -2.91
11 138.0 143.08 3.68 138.95 0.69 40.14 1.55

Table 3. Neural network analysis results.



It was thought that a better uldmate swrength prediction could be obtained by training the network
with the more detailed event frequency (amplitude) distribudon. The individual event count found at
each (1 dB) amplitude interval would serve as the input to the neural network. For this approach a three
layer network was employed. The hidden layer allowed the network to characterize the subde variatons
in the distribution and relate them to the known ultimate smengths in the maining set. The network
architecture was built around a 23 neuron input layer, an 11 neuron hidden layer, a fully connected biag,
and a single output layer neuron for predicting ulimate strengths. The subtle variations found within the
amplitude distibution were correlated with the ultimate strength of the training samples (by the hidden
layer's weighted connections) to yield a worst case error of 3.74%.

3.0 CONCLUSIONS

The experimental work in this paper demonstrated that a back propagation neural network can be
used to predict ulimate swrengths in graphite/epoxy tensile specimens by using the event frequency
(amplitude) distribution data as the input vectors with their known ultimate strengths as the output
vectors. Only the low amplitude portion of the AE data taken up to 25% of the expected failure strength
(from a series of six training specimens) were used in the input training vectors. The hidden layer of the
neural network was able to extract and map the subtle fearures of the amplitude distribution data to the
known failure strengths of the samples tested. The technique permitted a worst case ulumate strength
prediction error of 3.74%. This is somewhat lower than the 5.39% worst case error from the previous
statistical analysis [1].

The neural network was not able to correlate the Weibull distributon parameters of the amplitude
data with the ultimate strengths of the samples as well as the muldvariate stadstical analysis. Due to the
smoothing effect of the Weibull model on the event frequency data, the details required to generate
accurate ultimate strength predicdons were not present. The Weibull distribution modeling parameters
are very sensitive to aberrations in the event frequency data set. This leads to the formation of "noisy”
input data. Also, with the limited amount of information present in the input vector ("b" and/or "b*@")
the neural network has a tendency to memorizing the rraining data, this then results in higher predicrion
errors (especially with "noisy" input data).
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